A importância do nitreto de silício (SiNx) em Chips
No fabrico de chips, existe um material que desempenha um papel vital, que é o nitreto de silício (SiNx). Embora possa não receber a mesma atenção que outros materiais semicondutores mais conhecidos, como o silício (Si), o gálio arsenida (GaAs) ou o nitreto de gálio (GaN), a sua importância é inquestionável. Pode dizer-se que a maioria dos chips utilizará este material.
Na indústria de semicondutores, o nitreto de silício utilizado em diversas aplicações é muitas vezes não uniforme, geralmente representado pelo SiNx. O SiNx é um material amorfo cujas propriedades dependem da razão de azoto e silício, ou seja, do valor de x. Quando o valor de x se altera, as propriedades físicas e químicas do nitreto de silício também se alterarão. O nitreto de silício vem em muitas formas, incluindo Si3N4, Si2N2, SiN, etc.
O Si3N4 é um material cristalino, o que significa que a proporção de silício e azoto é fixada. Quando o valor de x é igual a 4/3, o SiNx é igual a Si3N4. No entanto, em aplicações práticas, o SiNx é frequentemente não fixo, e a sua relação entre silício e azoto pode ser ajustada alterando os parâmetros do processo de PVD ou CVD.
O nitreto de silício apresenta excelentes propriedades de isolamento, com uma resistividade até 10^14 Ω·cm, excedendo em muito alguns materiais isolantes comuns, como o óxido de silício (SiO2). A sua baixa constante dielétrica torna-a uma camada de isolamento ideal em aplicações de micro-ondas e radiofrequência. A camada de nitreto de silício também atua como uma barreira à difusão da impureza no chip. Pode prevenir dopantes como o boro e o fósforo alteram as características do dispositivo através da difusão. Além disso, também pode evitar a difusão de iões metálicos para evitar falhas como curtos-circuitos.
O nitreto de silício apresenta uma excelente estabilidade térmica, que é determinada pelas suas propriedades químicas especiais e pela estrutura cristalina. Pode manter-se estável em ambientes de alta temperatura sem decomposição química ou alterações físicas, como outros materiais. Isto porque na estrutura cristalina do nitreto de silício, cada átomo de silício é combinado com quatro átomos de azoto sob a forma de um tetraedro, e cada átomo de azoto é também combinado com quatro átomos de silício sob a forma de um tetraedro. Esta estrutura torna a rede de cristal de nitreto de silício extremamente estável e não fácil de deformar. Portanto, é utilizado como uma camada isolante de porta ao fabricar transístores de alta mobilidade de eletrões (HEMTs).
Quais são as vantagens do SiNx sobre o SiO2?
Melhor estabilidade térmica, dureza mais difícil e mais difícil de gravação.
A diferença e aplicação de calcita e dolomita
A calcita e a dolomita são rochas carbonatadas com estruturas cristalinas semelhantes. São minerais comuns nos estratos e abundantes na natureza. Ambos podem ser moídos e amplamente utilizados em muitos campos, mas a sua composição e utilizações são muito diferentes.
Os principais componentes da calcita e da dolomita são o carbonato de cálcio, mas a calcita, uma rocha sedimentar, é relativamente sólida, com baixa porosidade e baixa permeabilidade, e os fluidos subterrâneos muitas vezes não conseguem penetrar bem nela. Embora a dolomita também contenha uma grande quantidade de carbonato de cálcio, também contém uma quantidade considerável de carbonato de magnésio. A dolomita tem mais fissuras do que os estratos de carbonato de cálcio, pelo que tem uma boa permeabilidade.
Tanto a calcita como a dolomita podem ser moídas e utilizadas. A calcita pode ser transformada em pó para obter carbonato de cálcio pesado, que é uma carga inorgânica em pó normalmente utilizada. Possui características de elevada pureza química, elevada inércia, difícil reação química e boa estabilidade térmica. Por conseguinte, pode ser utilizado em borracha, plástico, fabrico de papel, construção (argamassa seca, betão), mármore artificial, rações, revestimento em pó de massa e outras indústrias. A adição de uma grande quantidade de pó de calcita à borracha pode melhorar a resistência à tracção, ao rasgo e ao desgaste da borracha; adicionar pó de calcita a produtos plásticos pode desempenhar um certo papel estrutural, que pode não só aumentar a estabilidade do produto, mas também melhorar a dureza do produto, a suavidade da superfície, etc.
A dolomita tem muitas utilizações depois de moída em pó fino, entre as quais a mais utilizada é na área dos revestimentos. O pó de dolomita de malha 325 é a principal matéria-prima do pó branco, podendo também produzir massa em pó e argamassa seca. Moendo até mais de 800 mesh, a brancura chega aos 95 e, após tratamento de superfície, pode ser utilizada como enchimento de tinta de látex. O pó de dolomita modificado é também um enchimento na indústria da borracha e do papel, o que pode melhorar o desempenho do produto e reduzir os custos. Os blanks cerâmicos são também misturados com pó de dolomita, o que pode reduzir a temperatura de queima do blank e aumentar a transparência do blank. Além disso, o pó de dolomita é também um purificador e adsorvente de esgotos ideal e também pode ser utilizado para fazer agentes de derretimento de neve.
O moinho de bolas ALPA + linha de produção de extensão integra moagem e transporte e pode ser utilizado para preparar pó ultrafino de calcita e dolomita
【Campos de aplicação】: materiais de construção, produtos químicos, metalurgia, revestimentos, fabrico de papel, borracha, medicamentos, alimentos e outros campos.
【Materiais aplicáveis】: bauxite, caulino, barite, fluorite, talco, escória, pó de cal, volastonite, gesso, calcário, rocha fosfática, calcite, mármore, dolomita, feldspato potássico, areia de quartzo, bentonite, minério de manganês e outros materiais.
Aplicação de Cerâmica de Alumina
As cerâmicas são utilizadas como biomateriais para preencher defeitos nos dentes e ossos, fixar transplantes ósseos, fraturas ou próteses ósseas e substituir tecidos doentes. São chamados de biocerâmicas. São amplamente utilizados na área médica devido às suas excelentes características, tais como elevada resistência, resistência ao desgaste, maior resistência à compressão e flexão e elevada biocompatibilidade.
O conceito de cerâmica de alumina abrange uma vasta gama. Para além da cerâmica de alumina pura, qualquer material cerâmico com um teor de alumina superior a 45% pode ser designado por cerâmica de alumina. As cerâmicas de alumina possuem muitos cristais isomórficos e heteromórficos, mas os mais utilizados são apenas o α-Al2O3 e o γ-Al2O3. Devido às suas diferentes estruturas cristalinas, possuem propriedades diferentes. Entre eles, o α-Al2O3, também conhecido como corindo, é a principal fase cristalina da cerâmica de alumina, com elevada resistência mecânica, resistência a altas temperaturas e resistência à corrosão.
Aplicação de Cerâmica de Alumina em Juntas Artificiais
As cerâmicas de alumina de elevada pureza têm um coeficiente de atrito muito baixo, uma elevada dureza e uma boa molhabilidade, sendo muito adequadas para utilização como superfícies de fricção de juntas. Apenas a alumina de elevada pureza pode ser utilizada na área médica, e as impurezas que podem formar fases limite de grão de vidro (como a sílica, os silicatos metálicos e os óxidos de metais alcalinos) devem ser inferiores a 0,1% em peso, porque a degradação de tais impurezas irá levar a locais de concentração de tensões onde aparecerão fissuras. Estudos descobriram que, selecionando parâmetros de sinterização apropriados (temperatura, tempo, taxas de aquecimento/arrefecimento) e aditivos dopantes (como óxido de magnésio, óxido de zircónio e óxido de crómio), o tamanho do grão e a porosidade da alumina podem ser controlados, e a tenacidade e a resistência à fratura da alumina pode ser efetivamente melhorada.
Os materiais compósitos formados por óxido de zircónio e alumina são designados por alumina temperada com óxido de zircónio (ZTA) ou zircónia temperada com alumina (ATZ), que também desempenham um papel importante nos materiais de juntas artificiais. Estes dois materiais compósitos dependem do teor dos componentes principais. Estes materiais compósitos combinam a capacidade de tenacidade do óxido de zircónio com a baixa sensibilidade da alumina à degradação em fluidos biológicos a baixa temperatura. De acordo com os requisitos de design do material, o ATZ pode ser utilizado quando é necessária uma elevada tenacidade à fratura, enquanto o ZTA pode ser utilizado quando a dureza é necessária. Não existem dados clínicos suficientes para mostrar que as superfícies de apoio da junta ZTA apresentam maiores vantagens na resistência ao desgaste. Estudos demonstraram que a aplicação de ZTA e alumina temperada à base de óxido de zircónio (ZPTA) em cirurgia articular é muito maior do que a ATZ.
Aplicação de Cerâmica de Alumina em Restauração Oral
As cerâmicas de alumina têm uma transmitância de luz e cor que correspondem às dos dentes reais e são ligeiramente tóxicas. A cerâmica de alumina tem uma condutividade térmica significativamente baixa, o que reduz a estimulação de alimentos frios e quentes na polpa. As cerâmicas de zircónia são resistentes ao desgaste, à corrosão e a altas temperaturas, e a sua cor é semelhante à dos dentes verdadeiros. São adequados para a restauração dentária e possuem uma elevada resistência. De acordo com a composição física dos materiais cerâmicos de alumina e os diferentes processos de fabrico, as cerâmicas de alumina utilizadas na área da restauração totalmente cerâmica podem ser divididas nas seguintes categorias:
(1) Cerâmica de alumina de infiltração de vidro
Infiltração de vidro, o nome completo é método de infiltração de vidro com revestimento de pasta. A alumina, como material de matriz, apresenta uma estrutura porosa, e nela penetra o vidro borossilicato de lantânio contendo corantes. Após a formação, apresenta uma microestrutura em que as fases cristalinas de alumina e as fases cristalinas de vidro se interpenetram.
(2) Cerâmica de alumina sinterizada densa e de elevada pureza
É composto por alumina com uma pureza de 99,9%. O pó de alumina é prensado num corpo verde (prensagem a seco) sob grande pressão e depois sinterizado. O método de formação por pressão confere à cerâmica de alumina uma elevada densidade e uma baixa porosidade.
(3) Cerâmica de alumina temperada com zircónia infiltrada em vidro
Este tipo de cerâmica é formado pela adição de 35% de zircónia parcialmente estabilizada ao pó cerâmico de alumina infiltrado com vidro. A zircónia tetragonal distribuída uniformemente pode ser observada no interior do material formado.
Com o desenvolvimento contínuo da ciência e da tecnologia, os materiais biocerâmicos de alumina estão a ser cada vez mais utilizados na área médica, e a investigação sobre os mesmos irá avançar em direções médicas emergentes com maior valor acrescentado e mais perspetivas.
Aplicação de hidróxido de cálcio na indústria alimentar
O hidróxido de cálcio, também conhecido como cal apagada ou cal viva, é produzido pela calcinação e digestão de matérias-primas como o calcário ou conchas de ostras contendo calcário. Geralmente está na forma de pó e é amplamente utilizado em alimentos, medicamentos, indústria química, tratamento de água potável e outros campos.
Como a solubilidade do hidróxido de cálcio é muito inferior à do hidróxido de sódio e do hidróxido de potássio, a corrosividade e a alcalinidade da sua solução são relativamente pequenas. Por conseguinte, pode ser utilizado como regulador da acidez nos alimentos para desempenhar um papel no tamponamento, neutralização e solidificação. O hidróxido de cálcio de qualidade alimentar tem uma atividade relativamente elevada, uma estrutura relativamente solta, elevada pureza, boa brancura, baixo teor de impurezas e não contém elementos nocivos como o Pb e o As.
1. Preparações de cálcio
Existem quase 200 preparações de cálcio no mercado, incluindo carbonato de cálcio, citrato de cálcio, lactato de cálcio e gluconato de cálcio. O hidróxido de cálcio é muito utilizado como matéria-prima na indústria de produção de preparações de cálcio. Entre eles, o gluconato de cálcio é comum. No meu país, é atualmente produzido por fermentação.
2. Leite em pó
O hidróxido de cálcio pode ser utilizado como regulador da acidez no leite em pó (incluindo o leite em pó adoçado) e nas natas em pó e seus produtos modulados, e nas fórmulas para lactentes. A quantidade utilizada é adequada de acordo com as necessidades de produção.
Como o leite em pó, especialmente o leite em pó ou a fórmula infantil, contém uma certa quantidade de diferentes tipos de proteínas, devido à presença de cadeias laterais ionizadas na superfície das proteínas, as proteínas transportam uma carga líquida e estas cadeias laterais podem ser tituladas.
3. Arroz, tofu e geleia gelada
Utilize arroz demolhado, adicione água, triture até formar uma pasta de arroz, adicione água de cal apagada e mexa uniformemente, aqueça e mexa até a pasta de arroz estar cozida e espessa. Deite a pasta de arroz fervida numa forma e, depois de arrefecer completamente, pode cortá-la em pedaços pequenos com uma faca e o arroz com tofu está pronto. Entre eles, a cal apagada atua como coagulante e também fornece cálcio. A cal apagada também precisa de ser adicionada durante a produção da geleia, que também atua como coagulante.
4. Ovos em conserva
A cal apagada, o carbonato de sódio e a cinza de madeira são utilizados como matéria-prima para fazer uma pasta e envolvê-la na superfície do ovo. Após um período de tempo, torna-se um ovo preservado que pode ser consumido diretamente através de reações químicas. Quando a proteína encontra um álcali forte, transforma-se gradualmente em água limpa. Se a solução alcalina continuar a entrar no ovo através da membrana semipermeável, a alcalinidade continua a aumentar, e as moléculas de proteína alcalina começam a polimerizar e a viscosidade aumenta gradualmente, transformando-se num gel para formar um ovo preservado. Se o álcali for excessivo, será prejudicial para a qualidade do ovo conservado.
5. Comida Konjac
A produção e utilização de alimento em gel konjac pelo povo chinês tem uma história de 2000 anos. O método de produção consiste em adicionar 30-50 vezes a quantidade de água à farinha de konjac, misturar até formar uma pasta, adicionar 5% a 7% de hidróxido de cálcio à farinha de konjac, misturar e solidificar.
6. Produção de açúcar
No processo de produção de açúcar, o hidróxido de cálcio é utilizado para neutralizar o ácido do xarope e, em seguida, o dióxido de carbono é introduzido para precipitar e filtrar o hidróxido de cálcio restante, de modo a reduzir o sabor amargo do açúcar. Também pode ser combinado com sacarose para formar sal de sacarose, pelo que pode ser utilizado para desaçucarar melaço ou refinar açúcar.
7. Outros
O hidróxido de cálcio pode ser utilizado como tampão, neutralizador e agente de cura para cerveja, queijo e produtos de cacau. Devido ao seu ajuste de pH e efeitos de coagulação, pode também ser utilizado na síntese de fármacos e aditivos alimentares, na síntese de biomateriais de alta tecnologia HA, na síntese de fosfatos VC para aditivos alimentares e na síntese de ciclohexaneato de cálcio, lactato de cálcio , citrato de cálcio, aditivos para a indústria açucareira, tratamento de águas e outros produtos químicos orgânicos de alta qualidade. É útil para a preparação de reguladores de acidez e fontes de cálcio, como produtos semiacabados de carne comestível, bebidas e enemas médicos.
A indústria do hidróxido de cálcio desenvolveu-se cedo e a sua produção anual pode atingir mais de 10 milhões de toneladas. É produzido principalmente no Reino Unido, nos EUA e na Alemanha, e o Japão e a Coreia do Sul produzem principalmente alta pureza e alta brancura.
Processo de moagem de pó de calcário
O calcário é a principal matéria-prima para a produção de cimento, agregados grossos e finos de betão, cal, carbonato de cálcio, etc. diferentes campos de aplicação:
No caso do calcário utilizado na metalurgia e na construção de estradas, o minério é geralmente britado e peneirado.
Para produtos em pó fino utilizados como aditivos alimentares e enchimentos comuns, o minério é geralmente triturado por um britador granular, um britador de martelo, um britador de impacto, etc. de impacto, etc.
Para o pó de calcário ultrafino e as cargas de alta qualidade utilizadas para a dessulfurização de gases de combustão, são geralmente necessárias britagem ultrafina e classificação fina, e o equipamento de processo é basicamente o mesmo que a britagem ultrafina de calcita.
Atualmente, a maior parte do pó de calcário utilizado na indústria de materiais de construção é calcário ou lascas de pedra geradas na produção de agregados, etc., que são moídos para satisfazer os requisitos de finura especificados.
1. Processo de moagem de calcário
Existem dois processos principais para a moagem de calcário:
Processo de circuito aberto: processo em que o material passa uma vez pelo moinho e é utilizado como produto acabado para a etapa seguinte da operação;
Processo de circuito fechado: processo no qual o material é classificado a um ou vários níveis após sair do moinho, e as partículas finas são utilizadas como produto acabado, e as partículas grossas são devolvidas ao moinho para remoagem.
O processo de circuito aberto é relativamente simples, com as vantagens de menos equipamento, menos investimento e fácil operação. No entanto, como todos os materiais têm de cumprir os requisitos de finura antes de saírem do moinho, é provável que ocorra uma moagem excessiva, e é provável que os materiais finamente moídos formem uma camada tampão, o que dificulta a moagem adicional de materiais grossos, reduzindo bastante a moagem.
Por conseguinte, a maioria dos fabricantes de pó de calcário opta atualmente pelo processo de circuito fechado, que pode reduzir a moagem excessiva, melhorar a eficiência do moinho e reduzir o consumo de energia. Além disso, o pó de calcário produzido pelo processo de circuito fechado tem um tamanho de partícula uniforme e é fácil de ajustar, o que pode satisfazer vários requisitos de finura.
2. Exemplo de produção em circuito fechado de moinho Raymond de pó de calcário
Descrição do processo:
O calcário cai da tremonha no fundo do silo até à correia transportadora e é depois enviado para o moinho para moagem.
Como o rolo de moagem rola firmemente no anel de moagem sob a ação da força centrífuga, o material é recolhido pela pá e enviado para o meio do rolo de moagem e do anel de moagem, e o material é triturado em pó sob a ação de a pressão de moagem.
O material em pó é soprado pelo ventilador e classificado pelo classificador acima do moinho.
O classificador é composto por rodas de lâminas radiais e dispositivos de transmissão. As rodas das lâminas são acionadas pelo dispositivo de transmissão para rodar a uma determinada velocidade, bloqueando as partículas grossas no fluxo de ar e devolvendo-as para retificação. O pó fino é enviado para o separador de ciclones com o fluxo de ar através da proteção contra o vento, pelo que o classificador desempenha uma função de triagem. O tamanho das partículas de pó pode ser ajustado livremente, ajustando o volume de ar ou alterando a velocidade da roda da lâmina.
O separador de ciclones separa os produtos qualificados do ar, e os produtos acabados são transportados para o armazém de produtos acabados através do elevador de canecas através da tubagem, e o fluxo de ar regressa ao soprador através da conduta de ar de retorno para reciclagem.
O material contém uma certa quantidade de humidade e uma certa quantidade de vapor de água será gerada durante a moagem. Além disso, toda a tubagem não está totalmente selada, pelo que uma certa quantidade de gás externo é aspirada para o interior do sistema, o que aumenta o volume de ar circulante do sistema. Para garantir que o moedor funciona sob pressão negativa, o excesso de ar entra no coletor de pó do saco para purificação e é depois descarregado para a atmosfera.
Como prolongar a vida útil dos equipamentos de moagem vertical
Na produção de cimento, o moinho vertical é um equipamento fundamental, e o estado de funcionamento do seu rolamento de rolos é crucial para a segurança e eficiência da produção.
Como fazer o rolo vertical do moinho durar mais tempo
1.º Escolha o lubrificante certo e substitua-o regularmente
A escolha do lubrificante é crucial. Deve escolher lubrificantes de alta qualidade adequados para ambientes de alta temperatura e alta pressão. Ao mesmo tempo, o lubrificante necessita de ser substituído regularmente para garantir a sua estabilidade e limpeza durante a utilização e evitar danos nos rolamentos causados por problemas de qualidade do óleo.
2.º Reforçar a manutenção diária, a deteção precoce e o tratamento precoce
Os operadores devem verificar regularmente o estado de funcionamento do sistema de lubrificação, especialmente em ambientes de temperatura elevada, e prestar atenção às alterações da temperatura do óleo. Se a temperatura do óleo for anormal, a máquina deve ser imediatamente parada para inspeção e continuar a operar após a resolução de problemas. O desgaste dos rolamentos também deve ser verificado regularmente e as peças problemáticas devem ser substituídas a tempo de evitar danos maiores.
3. Verifique e substitua regularmente os retentores de óleo
Embora o vedante de óleo seja pequeno, tem um efeito enorme. O desgaste do retentor de óleo deve ser verificado regularmente e o retentor defeituoso deve ser substituído a tempo de garantir que o lubrificante não verte e evitar que as impurezas externas entrem no rolamento. Esta simples medida pode prolongar significativamente a vida útil do rolamento.
Para além dos problemas de rolamento, a resistência ao desgaste do rolo de moagem e do revestimento do disco de moagem é também um fator importante que afeta a vida útil do moinho vertical. Diferentes materiais e processos de fabrico determinam a resistência ao desgaste do rolo abrasivo e do disco abrasivo.
1. Fundição tradicional: baixo custo, alto risco
Os processos de fundição tradicionais utilizam principalmente aço com alto teor de manganês e ferro fundido com alto teor de crómio como materiais. As vantagens destes materiais são baixo custo, processo simples e adequados para produção em larga escala.
No entanto, também têm desvantagens evidentes. Embora o aço com um elevado teor de manganês apresente uma boa tenacidade, a sua resistência ao desgaste é relativamente baixa. A resistência ao desgaste do ferro fundido com alto teor de crómio foi melhorada, mas o seu problema de fragilidade ainda é proeminente e é fácil de rachar durante a utilização, o que torna impossível a reparação e só pode ser utilizado uma vez.
2. Microfundição (revestimento de superfícies): escolha económica
A microfundição, também conhecida como tecnologia de revestimento de superfícies, é atualmente a solução antidesgaste mais utilizada. Este processo visa melhorar a resistência ao desgaste dos rolos de retificação e dos discos de retificação, revestindo uma camada resistente ao desgaste num substrato de aço fundido comum.
3. Fundição composta de liga cerâmica: a futura estrela resistente ao desgaste
A fundição composta de liga cerâmica é uma tecnologia emergente resistente ao desgaste que incorpora partículas cerâmicas na superfície da matriz de ferro fundido, melhorando significativamente a resistência ao desgaste do rolo de moagem e do disco de moagem. Este material possui uma resistência ao desgaste e uma tenacidade extremamente elevadas e é particularmente adequado para utilização em condições de trabalho adversas.
No entanto, o processo de fundição de compósitos de liga cerâmica é complexo, o custo de fabrico é elevado e existe também o problema da irreparabilidade. É mais adequado para condições de trabalho especiais com requisitos de resistência ao desgaste extremamente elevados, em vez de ambientes comuns de produção de cimento.
4.º Como escolher a solução mais adequada?
Na seleção dos materiais para os rolos de retificação e revestimentos dos discos de retificação, a dureza, a tenacidade, o custo e a capacidade de reparação devem ser considerados de forma abrangente, de acordo com as condições específicas de trabalho.
A fundição tradicional é adequada para ocasiões com elevados requisitos de controlo de custos e condições de trabalho relativamente simples;
A microfundição é adequada para a maioria das fábricas de cimento. Pode proporcionar uma melhor resistência ao desgaste e ao mesmo tempo reduzir os custos de manutenção;
A fundição composta de liga cerâmica é adequada para algumas condições especiais de trabalho. Embora o custo seja elevado, vale a pena prestar atenção à sua resistência ao desgaste extremamente elevada.
Aplicação da tecnologia de moagem ultrafina na indústria alimentar
A tecnologia de moagem ultrafina surgiu nos últimos anos com o desenvolvimento contínuo da moderna indústria química, eletrónica, biologia, desenvolvimento de materiais e minerais e outras tecnologias de alta tecnologia. É uma tecnologia de ponta para o processamento de alimentos no país e no estrangeiro.
No campo do processamento de alimentos, os pós com um tamanho de partícula abaixo de 25μm são geralmente designados por pós ultrafinos, e o método de preparação de pós ultrafinos é designado por tecnologia de moagem ultrafina.
As tecnologias de moagem ultrafina normalmente utilizadas em alimentos incluem principalmente o tipo de fluxo de ar, o tipo de vibração de alta frequência, o tipo de moinho rotativo de esferas (haste), o tipo de rolo, etc. de ar é mais avançada, utilizando o gás através do bocal de pressão para gerar forças violentas de impacto, colisão e fricção para obter a retificação do material.
Classificação da tecnologia de moagem ultrafina na indústria alimentar
Embora o pó ultrafino para alimentos já exista há pouco tempo, tem sido utilizado em condimentos, bebidas, alimentos enlatados, alimentos congelados, alimentos assados, alimentos saudáveis, etc., e o efeito é melhor.
Aplicação da tecnologia de moagem ultrafina no processamento de alimentos
Processamento de refrigerantes
Atualmente, os refrigerantes desenvolvidos através da tecnologia de micromoagem por fluxo de ar incluem chá em pó, bebidas sólidas de feijão e bebidas ricas em cálcio preparadas com pó de osso ultrafino.
A cultura do chá tem uma longa história na China. Beber chá tradicional consiste em preparar o chá com água a ferver. O corpo humano não absorve uma grande quantidade de nutrientes do chá. A maior parte das proteínas, hidratos de carbono e alguns minerais e vitaminas são retidos nos resíduos do chá. Se o chá for transformado em pó de chá (tamanho de partícula <5μm) à temperatura ambiente e no estado seco, a taxa de absorção dos seus nutrientes pelo organismo humano pode ser melhorada.
Adicionar chá em pó a outros alimentos também pode desenvolver novos produtos de chá. As bebidas proteicas vegetais são produtos lácteos feitos a partir de sementes de plantas ricas em proteínas e núcleos de frutos através de imersão, moagem, homogeneização e outras operações.
Processamento de frutas e legumes
Os vegetais são moídos em micropasta em pó a baixa temperatura, o que não só preserva os nutrientes, como também melhora o sabor da fibra devido ao microrrefinamento.
Processamento de grãos e óleo
Adicionar pó de farelo de trigo ultrafinamente moído, pó de soja, etc. O arroz, o trigo e outros grãos são processados em pó ultrafino. Devido ao pequeno tamanho das partículas, o amido superficial é ativado, e os alimentos recheados ou misturados com ele apresentam excelentes propriedades de fácil maturação, bom sabor e sabor.
A soja é processada em leite de soja em pó após moagem ultrafina, o que pode remover o cheiro a peixe. Os feijões como o feijão mungo e o feijão vermelho também podem ser transformados em pasta de feijão de alta qualidade, leite de soja e outros produtos após moagem ultrafina.
Processamento de produtos aquáticos
A spirulina, as pérolas, as tartarugas, os tubarões e outros pós ultrafinos de cartilagem têm vantagens únicas. Por exemplo, o processamento tradicional do pó de pérola consiste em moer bolas durante mais de dez horas para fazer com que o tamanho das partículas atinja várias centenas de malhas.
Processamento funcional de alimentos
O pó ultrafino pode melhorar a biodisponibilidade de substâncias funcionais e reduzir a quantidade de materiais básicos nos alimentos. A libertação sustentada de micropartículas no corpo humano pode prolongar a eficácia. No processo de desenvolvimento do mel sólido, a moagem ultrafina dos ingredientes com um moinho coloidal pode aumentar a finura do produto.
Processamento de especiarias e condimentos
A tecnologia de moagem ultrafina, como novo método de processamento de alimentos, pode tornar as especiarias e os temperos (principalmente produtos sólidos fermentados de feijão) processados por processos tradicionais de maior qualidade.
A enorme porosidade das especiarias e temperos após a micronização cria uma cavidade coletiva que pode absorver e conter o aroma, e o sabor dura muito tempo, e o aroma e o sabor são mais intensos.
Ao mesmo tempo, a tecnologia de moagem ultrafina pode fazer com que os temperos tradicionais sejam finamente quebrados em excelentes partículas ultrafinas com um tamanho de partícula uniforme e um bom desempenho de dispersão, e a fluidez, a taxa de dissolução e a taxa de absorção aumentam bastante, e o efeito de sabor também é significativamente melhorado.
Para produtos com elevadas exigências sensoriais, o tamanho das partículas dos temperos após a moagem ultrafina é extremamente fino, até 300-500 mesh, e a olho nu não consegue observar a existência de partículas, eliminando a geração de manchas pretas no produto e melhorando a qualidade da aparência do produto. Ao mesmo tempo, o equipamento correspondente da tecnologia de moagem ultrafina possui funções físicas e químicas como revestimento, emulsificação, emulsificação sólida e modificação, criando uma perspetiva realista para o desenvolvimento de produtos condimentados.
Quais as aplicações do dióxido de titânio em diferentes revestimentos?
Nos últimos anos, com o rápido desenvolvimento da indústria de revestimentos, as pessoas têm tido requisitos cada vez mais elevados para o desempenho do dióxido de titânio. Não só exigem que o dióxido de titânio tenha uma dispersibilidade muito boa, como também exigem que o dióxido de titânio tenha propriedades de cobertura muito boas. Ao mesmo tempo, também têm requisitos muito elevados para o teor de impurezas do dióxido de titânio. Sob tais requisitos elevados, o dióxido de titânio amplamente utilizado melhorou continuamente a sua tecnologia de produção, melhorou o seu desempenho e expandiu a sua direção de aplicação.
Entre eles, o dióxido de titânio de grau pigmentado tem um elevado índice de refração e um forte poder de tingimento, e apresenta vantagens notáveis tanto no poder de cobertura como na dispersibilidade. Por esta razão, o dióxido de titânio com grau de pigmento tem sido amplamente utilizado em revestimentos e fabrico de papel. A proporção de dióxido de titânio de grau pigmentado nos revestimentos é a mais elevada, entre os quais o dióxido de titânio rutilo é amplamente utilizado na indústria.
Como revestimentos decorativos
O desempenho do pigmento do dióxido de titânio com grau de pigmento é muito bom, e as pessoas modernas escolhem principalmente cores brancas ou claras para decorar as casas. Portanto, o dióxido de titânio com grau de pigmento tem sido amplamente bem recebido pelas pessoas na decoração de casas. Além disso, o dióxido de titânio pigmentado é também muito utilizado em revestimentos exteriores de navios, automóveis, etc.
Como revestimentos arquitetónicos
O dióxido de titânio de grau pigmentado desempenha um papel muito importante no processo de produção de revestimentos, e o dióxido de titânio é utilizado principalmente em revestimentos arquitetónicos.
Faça revestimentos brancos puros
A maioria dos revestimentos brancos existentes no mercado utiliza uma grande quantidade de dióxido de titânio pigmentado no processo de fabrico.
Faça revestimentos com padrões coloridos
Muitos revestimentos de padrões no mercado não podem agora prescindir do dióxido de titânio de grau pigmentado em termos de proporção de cor ou padrão, pelo que o dióxido de titânio de grau de pigmento desempenha um papel muito importante na produção de revestimentos de padrões coloridos. O dióxido de titânio de grau pigmentado também tem sido muito utilizado em tintas de exterior automóveis porque o dióxido de titânio de grau pigmentado tem uma cor muito boa e um alto brilho.
Faça revestimentos funcionais especiais
Muitos revestimentos resistentes a altas temperaturas utilizam dióxido de titânio de grau pigmentado no processo de produção, e os revestimentos resistentes a altas temperaturas são um tipo de revestimento funcional especial, pelo que o dióxido de titânio de grau pigmentado é uma matéria-prima indispensável na produção de revestimentos funcionais especiais.
Fazendo materiais condutores
O dióxido de titânio também pode ser utilizado para fazer materiais condutores. Uma vez que a superfície das partículas de dióxido de titânio com grau de pigmento pode formar um revestimento, o dióxido de titânio também pode ser utilizado na produção de materiais antiestáticos.
Fabrico de dióxido de titânio revestido com núcleo
O dióxido de titânio de grau pigmentado também pode ser utilizado para produzir dióxido de titânio com revestimento central, que também é frequentemente utilizado na produção de revestimentos.
Fabrico de pasta de dióxido de titânio
Existe também uma pasta de dióxido de titânio na classificação do dióxido de titânio. Não requer processos muito complicados nem custos de produção muito elevados durante o processo de produção. Por isso, o dióxido de titânio em pasta é muito popular na produção e na vida das pessoas. O dióxido de titânio de grau pigmentado é indispensável no processo de produção de dióxido de titânio em pasta, pelo que o dióxido de titânio de grau pigmentado desempenha um papel muito importante no processo de produção de dióxido de titânio em pasta.
Efeito de proteção UV
O dióxido de titânio de nanoqualidade é amplamente utilizado na produção de revestimentos anti-UV. Em muitos locais da vida das pessoas é necessário evitar a radiação ultravioleta. Portanto, é muito necessário o uso de dióxido de titânio de qualidade nanométrica com a função de proteção UV para fazer revestimentos anti-UV.
Efeito de absorção UV
O dióxido de titânio de nanoqualidade pode não só proteger os raios ultravioleta, mas também absorver os raios ultravioleta até certo ponto. Por conseguinte, muitos revestimentos de cores claras utilizam dióxido de titânio de qualidade nanométrica no processo de produção. Além disso, este dióxido de titânio também pode melhorar a resistência às intempéries das paredes exteriores dos edifícios.
Pigmentos de efeito
O dióxido de titânio de nano-grau rutilo é amplamente utilizado em pinturas exteriores automóveis. Pode não só cobrir eficazmente o baixo brilho da superfície exterior do automóvel, mas também apresentar às pessoas efeitos de luz mais requintados. Além disso, a aplicação de dióxido de titânio rutilo de grau nano no acabamento automóvel permite que as pessoas vejam diferentes efeitos de luz de diferentes ângulos, atendendo assim às necessidades visuais das pessoas.
Se a calcita pode produzir carbonato de cálcio de alta qualidade depende destes indicadores
A calcita é um mineral natural de carbonato de cálcio e a principal matéria-prima para a produção de carbonato de cálcio pesado. O teor e o teor de impurezas do minério de calcita são um dos fatores importantes que afetam o índice de qualidade dos produtos pesados de carbonato de cálcio e são também a chave para determinar se se trata de carbonato de cálcio de qualidade alimentar e medicamentosa ou de carbonato de cálcio de qualidade de enchimento comum.
1. Conteúdo de CaO
O CaO é a única marca de qualidade dos componentes úteis do minério. Nas exigências das indústrias de fabrico de papel, revestimentos, plásticos, borracha e alimentar, é expresso pelo teor de CaCO3 (que pode ser convertido a partir do teor de CaO).
2. Brancura
A brancura é a marca de qualidade física do minério, que está relacionada com a cor e o brilho do produto acabado.
3. Insolúveis em ácido clorídrico
Os componentes dos insolúveis de ácido clorídrico (A.I.R) incluem principalmente sílica livre (fSiO2), silicatos (alumínio) e óxidos de ferro e manganês, que são indicadores de combinação multimineral.
4. Teor de magnésio e metais alcalinos
O MgO é utilizado principalmente para avaliar o teor de dolomita no minério. Nas indústrias do papel e do plástico, quando o teor de dolomita é inferior a 3% (equivalente a MgO≤0,65%), o impacto não é significativo. Nas indústrias de revestimentos e borracha, este requisito pode ser reduzido para 6% (equivalente a MgO≤1,3%). O MgO do talco e da serpentina é geralmente considerado como tendo pouco impacto.
5. Conteúdo de SiO2
SiO2, vários testes de minério mostram que provém principalmente de fSiO2, aluminossilicatos e minerais de silicato. Entre eles, os minerais silicatados são principalmente a volastonita, que apresenta uma certa diferença de dureza em relação à calcita e afeta a uniformidade do tamanho das partículas do produto. A lavagem com água pode remover algum Si, Al e Fe da calcita e melhorar a brancura do minério.
6. Conteúdo de Al2O3
O Al2O3 provém principalmente dos minerais de aluminossilicato e é um dos principais componentes dos insolúveis de ácido clorídrico. O valor permitido não deve ser superior ao valor limite dos insolúveis em ácido clorídrico.
7. Conteúdo de Fe2O3
O Fe2O3 é um componente corante e o seu conteúdo tem impacto na cor do produto. De acordo com a experiência da indústria, o Fe2O3≤0,3% não tem efeito significativo e o Fe2O3≤0,1% quase não tem efeito. O Fe2+ existe em muitos minerais. Se o preço mudar durante o processamento ou utilização, é necessário prestar atenção ao seu impacto.
8. Conteúdo de MnO
O MnO no minério de calcita provém principalmente de óxidos de manganês, minerais carbonatados e minerais silicatados. O MnO afetará a brancura. Não existem requisitos para o manganês nos padrões atuais da indústria. Nos indicadores anteriores, a aplicação na indústria da borracha exige o controlo do seu conteúdo.
9. Conteúdo nocivo
Metais pesados, bário, flúor, arsénio, álcalis livres (metal alcalino + magnésio), enxofre e outros indicadores. Estes indicadores necessitam de ser avaliados para utilização como aditivos alimentares, pasta de dentes e produção de papel para embalagens alimentares, ou para produtos de borracha e plásticos e enchimentos de revestimento que tenham impacto na saúde.
10. Conteúdo de matéria estranha escura
O conteúdo de matéria estranha escura e o tamanho das partículas têm um certo impacto na brancura. Nas condições atuais, recomenda-se a realização de estatísticas qualitativas sobre o conteúdo de matéria estranha escura e partículas para avaliar se é adequado para o processamento ultrafino. Quando o teor de matéria estranha escura no carbonato de cálcio pesado para a indústria papeleira excede um determinado teor, deve ser utilizado como indicador de avaliação. Geralmente, é necessário que não mais de 5 partículas escuras de matéria estranha estejam contidas em cada grama de amostra.
11.º Amarelo e transparência
A brancura testada atualmente, também conhecida como brancura da luz azul, é na verdade o brilho do material e não consegue refletir bem a diferença de cor do material. Portanto, o carbonato de cálcio pesado para fabrico de papel precisa de avaliar o amarelecimento e a transparência. A indústria papeleira espera que o amarelecimento seja baixo, a transparência seja baixa e a cobertura seja boa. A calcita com elevada brancura apresenta geralmente boa transparência.
Quais as vantagens do sulfato de bário precipitado na aplicação de revestimentos?
O sulfato de bário precipitado é um agente de reforço na indústria de revestimentos e é muito popular entre os consumidores Pode melhorar a resistência à água, ao calor, ao desgaste e ao impacto dos revestimentos. que pode prevenir a pintura. etc.
O sulfato de bário precipitado também pode ser utilizado para substituir o dióxido de titânio. Em comparação com o dióxido de titânio, o seu poder de cobertura não é reduzido e aumenta a brancura e o brilho do revestimento. correto devido ao seu forte poliuretano químico.
O revestimento produzido pelo sulfato de bário precipitado não só aumenta o teor de sólidos do revestimento, como também reduz a quantidade de solvente utilizado. mas também melhora muito a eficiência da produção e cria lucros empresariais.
Apresenta as seguintes vantagens em aplicações de revestimento:
1. Desempenho de elevado custo
O sulfato de bário precipitado tem uma reflectividade extremamente elevada num amplo espectro, por isso parece um pó branco e tem cor neutra Isto pode manter o brilho e a tonalidade originais do pigmento. base de água, pasta de cor solvente ou pasta de cor universal, a utilização de sulfato de bário precipitado reduzirá significativa e eficazmente o problema de floculação na preparação de vários pigmentos, aumentará o impedimento estérico ou carregará a repulsão para. a sua relação custo-benefício. Também pode reduzir eficazmente a utilização de vários pigmentos e desempenhar um papel na substituição de pigmentos, incluindo dióxido de titânio, pigmentos coloridos e negro de fumo.
2. Pode ser utilizado para ajustar o brilho
O sulfato de bário precipitado apresenta uma excelente dispersibilidade, pelo que a tinta com sulfato de bário precipitado apresenta um brilho e propriedades reológicas extremamente elevadas, mesmo em concentrações mais elevadas.
3. Pode reduzir o teor de solvente
O sulfato de bário precipitado tem uma baixa absorção de óleo, o que pode aumentar eficazmente o conteúdo sólido da pasta colorida e reduzir a quantidade de solvente.
4. Pode reduzir o tempo de moagem
A utilização de sulfato de bário precipitado na preparação de revestimentos pode reduzir eficazmente o problema da floculação na preparação de diversos pigmentos, não só poupando matéria-prima, mas também encurtando eficazmente o tempo de moagem e dispersão.
5. Muito boa resistência às intempéries/resistência química
O sulfato de bário precipitado tem uma forte capacidade de reflexão da luz na gama de comprimento de onda ultravioleta e pode cooperar com o TiO2 para ter uma boa resistência ao sol e às intempéries.
6.º Melhorar as propriedades mecânicas
O revestimento com adição de sulfato de bário precipitado apresenta uma melhor adesão intercamadas e dureza do filme.